Generalized Dynamical Spin Chain and 4 - Loop Integrability in N = 6 Superconformal Chern - Simons Theory

نویسندگان

  • Dongsu Bak
  • Soo-Jong Rey
چکیده

We revisit unitary representation of centrally extended psu(2|2) excitation superalgebra. We find most generally that ‘pseudo-momentum’, not lattice momentum, diagonalizes spin chain Hamiltonian and leads to generalized dynamic spin chain. All known results point to lattice momentum diagonalization for N = 4 super Yang-Mills theory. Having different interacting structure, we ask if N = 6 superconformal Chern-Simons theory provides an example of pseudomomentum diagonalization. For SO(6) sector, we study maximal shuffling and next-to-maximal shuffling terms in the dilatation operator and compare them with results expected from psu(2|2) superalgebbra and integrability. At two loops, we rederive maximal shuffling term (3-site) and find perfect agreement with known results. At four loops, we first find absence of next-tomaximal shuffling term (4-site), in agreement with prediction based on integrability. We next extract maximal shuffling term (5-site), the most relevant term for checking the possibility of pseudo-momentum diagonalization. Curiously, we find that result agrees with integraility prediction based on lattice momentum, as in N = 4 super Yang-Mills theory. Consistency of our results is fully ensured by checks of renormalizability up to six loops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two - loop Integrability of Planar N = 6 Superconformal Chern - Simons Theory

Bethe ansatz equations have been proposed for the asymptotic spectral problem of AdS4/CFT3. This proposal assumes integrability, but the previous verification of weak-coupling integrability covered only the su(4) sector of the ABJM gauge theory. Here we derive the complete planar two-loop dilatation generator of N = 6 superconformal Chern-Simons theory from osp(6|4) superconformal symmetry. For...

متن کامل

Two - loop test of the N = 6 Chern - Simons theory S - matrix

Starting from the integrable two-loop spin-chain Hamiltonian describing the anomalous dimensions of scalar operators in the planar N = 6 superconformal Chern-Simons theory of ABJM, we perform a direct coordinate Bethe ansatz computation of the corresponding two-loop S-matrix. The result matches with the weak-coupling limit of the scalar sector of the all-loop S-matrix which we have recently pro...

متن کامل

QCD properties of twist operators in the N = 6 Chern - Simons theory

We consider twist-1, 2 operators in planar N = 6 superconformal ChernSimons ABJM theory. We derive higher order anomalous dimensions from integrability and test various QCD-inspired predictions known to hold inN = 4 SYM. In particular, we show that the asymptotic anomalous dimensions display intriguing remnants of GribovLipatov reciprocity and Low-Burnett-Kroll logarithmic cancellations. Wrappi...

متن کامل

Symplectic Three - Algebra and N = 6 , Sp ( 2 N ) × U ( 1 ) Superconformal Chern - Simons - Matter Theory

We introduce an anti-symmetric metric into a 3-algebra and call it a symplectic 3-algebra. The N = 6, Sp(2N) × U(1) superconformal Chern-Simons-matter theory with SU(4) R-symmetry in three dimensions is constructed by specifying the 3-brackets in a symplectic 3-algebra.

متن کامل

Remark About Scaling Limit of ABJ Theory

We generalize the suggestion presented in arXiv:0806.3498 that the 3d N = 8 superconformal SU(N) Chern-Simons-matter theory of Lorentzian Bagger-LambertGustavson type (L-BLG) can be obtained through the scaling limit from N = 6 superconformal U(N) × U(N) Chern-Simons-matter theory of Aharony, Bergman, Jafferis and Maldacena (ABJM) to the case when we study the scaling limit of N = 6 superconfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009